1

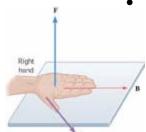
February 24th, 2003 Phys. 221 Lecture 17

Ch 21 Magnetic Force and Field 1st 1/2 **Today:**

Ch 21 Magnetic Force and Field 2nd ½ HW 15 Friday:

Chapter 21 The Magnetic Force and Magnetic Field

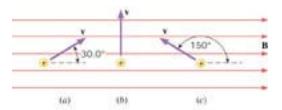
Introduction


- Charge and Electric Interaction:
- Moving Charge and the Magnetic Interaction:
- Current Wire Current Wire interaction
 - o Anti-Parallel
 - Parallel
- Current Wire Current Wire Loop interaction
- Current Wire Magnet Interaction
- Magnet Magnet Interaction
- Plan for today and tomorrow
- 21.1 Magnetic Fields
 - Magnets
 - o Magnetic Field
 - B
 - Magnetic Field of Cow Magnet
 - Magnetic Field of the Earth
- 21.2 The Force on a Charge moving in a Magnetic Field
 - Demo: Horse-Shoe Magnet
 - Handy rule.
 - o Direction of magnetic force

Equation 21.1

- o Magnitude (and sign) of magnetic force
 - In words.
- o Field
- Charge
- Velocity
 - Perpendicular speed

Example 1 A charge of 12 μ C, traveling with a speed of 9.0×10^6 m/s at 120° to the magnetic field experiences a magnetic force of 8.7×10^{-3} N. A) What is the magnitude of the field? B)If the field and speed are oriented as shown, what is the direction of the force?


Example 2: Say another charge, $q^2 = 5.00\mu\text{C}$, travels at an angle of 40.0° with respect to the same magnetic field and experiences a 1.90×10⁻³ N Force. Determine the speed of q2.

HW15

Phys. 221

2. A particle with a charge of 8.4µC and a speed of 45 m/s enters a uniform magnetic field whose magnitude is 0.30 T. For each of the cases n the drawing, find the magnitude and direction of the magnetic force on the particle.

5. At a certain location, the horizontal component of the earth's magnetic field is 2.5×10⁻⁵ T, due north. A proton moves eastward with just the right speed, so the magnetic force on it balances its weight. Find the speed of the proton.