Today	Ch 20 1 st ¹ / ₂ DC Circuits	HW10redo HW 12
Lab	4 DC Circuits	
Wednesday	Ch 20 2 nd ½ DC Circuits	HW11redo HW 13

19.3.1 Energy Storage in a Capacitor

Chapter 20: Electric Circuits

Introduction:

20.1 Electromotive force and Current

- Principle of circuitry.
 - \circ Vocab and symbols.
- $Emf \equiv \mathbf{D}V_{supply}$
 - Batteries:
 - Symbol.
- Current
 - Fluid analogy:
 - **Definition**
 - Direction
 - + vs. charge flow:
 - **AC / DC:**
 - DC

• Ex.

• AC:

• Ex.

Example 1 Say a portable CD player can play for 2.0 h before completely draining the batteries. If it draws a current of 25 mA, how much charge is flow through the player, from one battery terminal to the other? How many electrons?

20.2 Ohom's Law

- Flashlight
 - Ohm's Law Equation
 - Resistance definition
 - Directions
 - Water analog visual:

Example 2: Say the filament of our light bulb has a resistance of 580 Ω and it is screwed into a ceiling light socket, with a voltage of 120V across the terminals. What is the current through the filament?

20.3 Resistance and Resistivity

• **r** = Resistivity

Example 3: A cylindrical copper cable carries a current of 1200 A. There is a potential difference of 1.6×10^{-2} V between two points on the cable that are 0.24 m apart. What is the radius of the cable?

• Temperature Dependence of Resistivity

HW 13

2. A defibrillator is used during a heart attack to restor the heart to its normal beating pattern. A defibrillator passes 18 Amps of current through the torso of a person in 2.0 ms. (a) How much charge moves during this time? (b) How many electrons pass through the wires connected to the patient?

3. The filament of a light bulb has a resistance of 580Ω . A voltage of 120 V is connected across the filament. How much current is in the filament?

7. The resistance of a bagel toaster is 14 Ω . To prepare a bagel, the toaster is operated for one minute from a 120–V outlet. How much energy is delivered to the toaster?

13. A cylindrical copper cable carries a current of 1200 A. There is a potential difference of 1.6×10^{-2} V between two points on the cable that are 0.24 m apart. What is the radius of the cable?