
Today	Ch 19 3 rd 1/3 rd Electric Potential	HW9Redo, HW11
Monday	Ch 20 1 st ¹ / ₂ DC Circuits	HW10redo HW 12
Lab	4 DC Circuits	

19.3Equipotential Surfaces and Their Relation to the Electric Field (Lab)

- Gravitational Analog
 Terral Mar
 - Topal. Map
 - Relation between Equipotentials and E
 Definition in terms of E
- **Example 0:** Draw the elevation, and then the topal map if + charge is a local peak and charge is a local well and in between is sea level.

No net electric work if a charge stays on an Equipotential Point charge equipotentials

Example 1: a problem like Pr. 30. In lab, many of you mapped out the equipotential lines between two parallel lines, one at -5V and the other at +5V. You saw the -4V, -3V, -2V, lines were equally spaced, indicating that the electric field was constant between the two lines. If they were 0.07 m apart, what was the field between them and in which way did it point?

19.4Capacitors and Dielectrics

- **Demo:** Charging up a capacitor.
 - E-field of a capacitor (hollow)

19.4.1 The Capacitance of a Capacitor Voltage of a Capacitor (hollow

Example 2: Say we connect our two plates to a battery with 9V across its terminals, and it holds 3×10^{15} excess electrons on one plate, and they repel an equal number of electrons off the other plate. So there is a charge of 0.05 C on a plate. How much charge would it hold if it were connected to a 3V battery instead?

19.4.2 The Dielectric Constant

- Dielectrics
 - Qualitative effects of a dielectric
 - Constant plate charge.
 - Constant plate voltage

Now to get quantitative.

- Dielectric Constant
- How this affects the Capacitance

Example 3: Say I place a piece of paper (dielectric constant 3.3) between the plates of my demo capacitor, then I deposit enough charge on it that there is a 20 V difference between the plates. If I remove the paper and hold the two plates the same distance apart, what would be the new voltage?

HW12

- 30. Theinner and outer surfaces of a cell membrane carry a negative and positive charge, respectively. Because of these charges, a potential difference of about 0.070 V exists across the membrane. The thickness of the membrane is 8.0×10^{-9} m. What is the magnitude of the electric field in the membrane?
- 38. An axon is the relatively long tail-like part of a neuron, or nerve cell. The outer surface of the axon membrane (dielectric constant = 5, thickness = 1×10^{-8} m) is charged positively, and the inner portion is charged negatively. Thus, the membrane is a kind of capacitor. Assuming that an axon can be treated like a parllelplate capacitor with a plate area of 5×10^{-6} m², what is its capacitance?
- 42. Two capacitors are identical, except that one is empty and the other is filled with a dielectric ($\kappa = 4.50$). The empty capacitor is connected to a 12.0-V battery. What must be the potential difference a cross the plates of the capacitor filled with a dielectric such that it stores the same amount of electrical energy as the empty capacitor?
- 46. Review Conceptual Example 11 in the text before attempting this problem. An empty capacitor is connected to a 12.0-V battery and charged up. The capacitor is then disconnected from the battery, and a slab of dielectric material ($\kappa = 2.8$) is inserted between the plates. Find the amount by which the potential difference across the plates changes. Specify whether the change is an increase or a decrease.