Physics 221 Lecture 10 Outline February 6th, 2004 1

TodayCh 18 Electric ForceHW8MondayCh 19 Electric PotentialHW9

Lab 3 Electrostatics

18.1.1 The Force on a Point Charge Due to Two or More Other Point Charges

The forces are vectors, so they must be treated as such

Example 1: Pr. 13 An equilateral triangle has sides 0.15 m, Charges of -9.0 + 8.0 and $+2.0 \,\mu\text{C}$ at each corner. Find the magnitude of the net force electric force on the particle with a charge of $+2.0 \,\mu\text{C}$.

18.2 The Electric Field

Fields

- Action at a Distance
- Conceptual cue from Sound
- Apply Sound model to Action-at-a-distance
 - o Gravitational Example
 - o Electrical Demo: Vander Graff Generator and tin foil ball.

18.2.1 Definition.

Ex 2. There are three charged particles arranged as shown. Particle 1, with the $+4.0 \,\mu\text{C}$ charge then ended-up subject to a net electrical force of magnitude $F = 23 \,\text{N}$ and pointing 24° up off the x-axis. What is the electric field at the location of Particle 1?

- Field leads to Force
 - o Demo: Vander Graff Generator & charged Rabbit hair

Ex 3. Fields of Multiple Sources: Two positive point charges, $q_1 = +16\mu C$ and $q_2 = +4.0 \mu C$ are separated in a vacuum by a distance of 3.0 m. Find the spot on the line between them where the net electric field is zero.

- Analogy to g in Gravitation
 - Gravitational Field
 - Mathematical Convenience
 - Property of Space, not mass
- 18.3 Electric Field Lines
 - Rules
 - Point Charge
 - Water Analog
 - o Demo: Pascal's principle water squirter
 - Dipole
- **18.3.1 Dipole Moment**
- 18.3.2 Examples drawing Field Lines
 - Parallel plates

HW9: Ch 18: Pr 26, 29, 32

- **26.** Review Conceptual Example 12 as an aid in working this problem. Charges of -4q are fixed to diagonally opposite corners of a square. A charge of +5q is fixed to one of the remaining corners and a charge of +3q is fixed to the last corner. Assuming that ten electric field lines emerge from the +5q charge, sketch the field lines in the vicinity of the four charges.
- 29. Two charges are placed on the x axis. One charge $(q_1 = +8.5 \,\mu\text{C})$ is at $x_1 = +3.0 \,\text{cm}$ and the other $(q_2 = -21 \,\mu\text{C})$ is at $x_2 = +9.0 \,\text{cm}$. Find the net electric field (magnitude and direction) at (a) $x = 0 \,\text{cm}$ and (b) $x = +6.0 \,\text{cm}$.
- 32. A chrge of $q = +7.50 \,\mu\text{C}$ is located in an electric field. The x and y components of the electric field are $E_x = 6.00 \times 10^3 \,\text{N/C}$ and $E_y = 8.00 \times 10^3 \,\text{N/C}$, respectively. (a) What is the magnitude of the force on the charge? (b Determine the angle that the force makes with the + x axis.