Today: Wed:	 17 Interference 1st 1/2 17 Interference 2nd 1/2 	HW3 redo, HW4 redo,	HW5 HW6
Lab:	Lab2 Standing Waves and Resonance		
Fri:	Review for Exam 1 (Ch 10, 16, 17)	HW5 redo,	HW7

Chapter 17

- Introduction
- **17.1** The Principle of Linear Superposition
 - Wave pulse: 'pull-up / pull-down' pairs
 - Demo: two pulses on the long spring
 - Two up pulses interact
 - An up and a down pulse interact
 - the Principle of Linear Superposition:
 - Definitions
 - Constructive interference:
 - **Destructive interference:**

17.2 Constructive and Destructive Interference of Sound Waves

• Full Waves 1-D propagation

- Nodes
- Anti-nodes
- Full Waves 2-D propagation
 - To step this up from 1-D *toward* the case of sound waves, radiating in 3-D, we'll consider waves interacting in 2-D.
 - Wave tank demo

Conditions of Constructive and Destructive interference

• 3-D Sound Waves

Demo: constructive & destructive sound waves.

Example1: I have two speakers, 1 and 2, and a microphone all arranged in a line, with the microphone between the speakers. The speakers are synchronously producing 900 Hz signals, and the speed of sound is 343 m/s. If the microphone is at a point of constructive interference,

- A) How far should I move speaker 1 to create another point of constructive interference?
- B) Alternatively, how far toward speaker 1 should I move the microphone to arrive at the next point of constructive interference?

17.3 Diffraction

- 2-D
 - **Demo & Observations**
 - Application
 - Dependence on width and wavelength
- 3-D
 - Dependence on width and wavelength
 - Demo

Physics 221

Lecture 06 Outline

Jan. 26th, 2004

2

• **Example2:** Say you have a speaker with a 6 inch (0.15 m) woofer and a 3 inch (0.075 m) tweeter. Given that the speed of sound is about 343 m/s, what would be the minimum frequency for each that doesn't "beam" at all?

HW6

3. The drawing graphs a string on which two rectangular pulses are traveling at a constant speed of 1 cm/s at time t = 0 s. Using the principle of linear superposition, draw the shape of the string's pulses at t = 1 s, 2 s, 3 s, and 4 s.

4. In the Figure, suppose that the separation between speakers A and B is 5.00 m and the speakers are vibrating in phase. They are playing identical 125-Hz tones, and the speed of sound is 343 m/s. What is the largest possible distance between speaker B and observer C, such that he observes destructive interference?

10. The entrance to a large lecture room consists of two side-by-side doors, one hinged on the left and the other hinged on the right. Each door is 0.700 m wide. Sound of frequency 607 Hz is coming through the entrance from within the room. The speed of sound is 343 m/s. What is the diffraction angle θ of the sound after it passes through the doorway when (a) one door is open and (b) both doors are open?