| Today:  | <b>10</b> Simple Harmonic Motion & Elasticity 2 <sup>nd</sup> <sup>1</sup> / <sub>2</sub> |
|---------|-------------------------------------------------------------------------------------------|
| Monday: | <b>16</b> Waves & Sound 1 <sup>st</sup> 1/3                                               |
| Lab:    | Lab 1: Harmonic Motion                                                                    |

HW1 HW2

- Administrative
  - Office Hours

# **10.2** Simple Harmonic Motion and the Reference Circle Demo: mass on spring, let it bob

- Qualitative Plot of Position Vs. Time and Force Vs. Time
- Mathematical description of Motion: Displacement

### **Periodic Functions**

- Amplitude
- Period
- Frequency
- Angular Frequency

**Example 1** Say our mass bobs up and down 4 times in 6 seconds. A) What is the period? B) What is the frequency? C) What is the 'angular' frequency?

- o Units
- Connection to physical properties, m and k. Demo: Mass dependence of frequency

**Example 2:** Say we observe that our 0.5 kg mass has a period of 1.5 sec. on our spring. What is the spring constant?

### **Simple Harmonic Motion Generality**

### Velocity & Acceleration

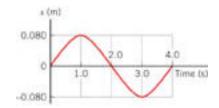
- Velocity
  - Qualitatively
  - Quantitatively
    - Amplitude

**Example 3:** Say I pull the mass down 0.1 m and release. It bobs up and down in 1.5 sec. What is the maximum speed?

• Acceleration

### Other objects Displaying Simple Harmonic Motion The Pendulum

- Linear Approximation
- Only an Approximation
- Frequency dependence on g and l


**Example 4**: How long must be a pendulum to have a period of 2 sec?

## Physics 221 HW 2.

14. A loudspeaker diaphragm is producing a sound for 2.5 s by moving back and forth in simple harmionic motion. The angular frequency of the motion is  $7.54 \times 10^4$  rad/s. How many times does the diaphragm move back and forth?

17. Concept Simulation 10.3 at

www.wiley.com/college/cutnell (edition 6) illustrates the concepts pertinent to this problem. An 0.80 kg object is attached to one end of a spring, as in Figure 10.6, and the system is set into simple harmonic motion. The displacement x of the object as a function of time is shown in the drawing. With the aid of these data,



determine(a) the amplitude A of the motion, (b) the angular frequency  $\omega$ , (c) the spring constant k, (d) the speed of the object at t= 1.0 s, and (e) the magnitude of the object's acceleration at t = 1.0 s.

42. A pendulum clock can be approximated as a simple pendulum of length 1.99 m and keeps accurate time at a location where  $g = 9.83 \text{ m/s}^2$ . In a location where  $g = 9.78 \text{ m/s}^2$ , what must be the new length of the pendulum, such that the clock continues to keep accurate time (that is, its period remains the same)?