Sample Equation Sheet

This is a closed book, closed notes exam. Calculators are permitted, but no saved equations may be used. Please let me know if a necessary equation does not appear below. Point assignments are noted throughout the exam. Partial credit is awarded *when work is shown*.

Useful Geometric Relations

For circles: $C = 2\pi R$, $A = \pi R^2$

For Spheres: $A = 4\pi R^2$, $V = \frac{4}{3}\pi R^3$

Physical Relations

Fundamental

$$v \equiv \frac{d}{t}$$
 $v_{wave} \equiv \lambda \cdot f$ $f \equiv \frac{1}{P}$ $pressure \equiv \frac{Force}{Area}$

Under Certain Conditions

$$v_{sound} = 344 \, \text{m/s} + 0.6 \, \text{m/(s.°C)} \cdot (T_C - 20 \, \text{°C})$$
 $v_{sound} = 344 \, \text{m/s} + \frac{1}{3} \, \text{m/(s.°F)} \cdot (T_F - 68 \, \text{°F})$

$$P = 2\pi \sqrt{\frac{m}{k}}$$
 $f_n = nf_1, \ n = 1, 2, 3, ...$ $\frac{Force_1}{Force_2} = \frac{x_2}{x_1}$

Vocabulary & Ideas

- o Ch 6 The Human Ear
 - JND (just noticeable difference)
 - Outer Ear
 - Its function
 - Pinna
 - Ear canal
 - Eardrum
 - Middle Ear
 - It's function
 - Ossicles
 - Malleus
 - o Incus
 - o Stapes
 - Oval window
 - Eustachian tube
 - Inner Ear
 - It's functions
 - Semicircular canals
 - Cochlea
 - o Scala vestibuili
 - o Scala timpani
 - o Helicotrema
 - Cochlear Duct
 - Reissner's membrane
 - Basilar Membrane
 - Organ of Corti
 - Hair cells

Ch 8 Sound spectra and Electronic synthesis

- Voltage and Current
- Sine, square, pulse, triangular, and saw tooth waves
- Random noise
- Periodic wave
- Harmonic series
- Fourier synthesis
- Fourier analysis
- Fourier component
- Fourier spectrum = vibration recipe
- Amplitude and phase

Ch 9 Percussion Instruments

Natural Modes

Ch 16 Sound Reproduction

- Electron
- Charge
- current
- voltage
- magnet
- transducer
- reciprocity
- microphone
- loudspeaker
- dynamic range
- frequency response
- electroacoustice / electromechanical transducer types
 - electrostatic (a.k.a. condenser, capacitor)
 - piezoelectric (a.k.a. crystal, ceramic)
 - dynamic (a.k.a. electromagnetic, moving-coil)
- Amplifiers
 - Principle of operation
 - Imperfections
 - o Clipping
 - Amplitude dependence (harmonic distortion)
 - Frequency dependence

Ch 17 The Ear Revisited

- Telephone theory
 - The basic idea
- Place theory
 - The basic idea
 - How it works mechanically
 - What evidence we have
- Periodicity theory
 - The basic idea
 - How it works
 - What evidence we have (excluding the 'pitch judgment' argument since Pattern Recognition provides an alternative)
- Pattern Recognition
 - The basic idea
 - What evidence we have
- Critical Bands & Masking

Assignments you've done

Ch 8 Sound Spectra and Electronic Synthesis

- Given a list of frequencies, what is the frequency of a complex wave composed of them? What is the period?
- Graphically combine pure tones to produce complex tone
- Given a period for a complex wave, what is the family of pure tones that can be combined to produce it?
- Correlate the qualitative appearance of a Fourier Spectrum with the corresponding complex wave with the sound of that wave.

Lab 7

- Translate between a Fourier Spectrum and a simple (not necessarily pure) waveform.
- Correlate the qualitative character of the Spectrum waveform sound.

Ch 9 Percussion Instruments and Natural Modes

• Identify N possible modes for system of N masses

Ch 16 Sound Reproduction

- Relate transducer diaphragm size, sound wave length, and frequency.
- Relate the wavelength of patterns on a magnetic tape to the tape speed and the frequency with which the pattern is read.
- Consider diffraction for speakers

Lab 8 Electronic Amplification

• The imperfections of real amplifiers – clipping, amplitude dependence and frequency dependence – the effects on the spectrum and on what you hear

Ch 6 The Human Ear

- Does the diffraction of high or low frequency waves about the pinna help you to localize sound?
- Relate pressure on eardrum to eardrum displacement; relate eardrum displacement to oval-window displacement.

Ch 17 The Ear Revisited

- Pros and cons of different theories
- Place theory the location of excitation for specific frequencies
- Pitches for combinations of harmonically-related frequencies
- Masking
- Difference Tones

Qualitative Questions to be ready for

- Ear
 - o How does it work
 - What are the general roles of the three regions
 - What are the roles of the individual pieces
 - How does masking work
 - o Given names and diagrams, be able to put the two together.

Transducers

- o How do they generally work
 - How does a specific one work
- o Microphones
 - What are the two criteria for a good microphone & why is there a trade-off

Amplifiers

 What would be ideal performance, in what ways does a real amplifier fall short of the ideal and what does that sound like

Synthesis

- What are the three types of synthesis & what are their basic elements
- The three pieces of a synthesized sound: attack, sustain, decay. How must they differ?

• Fourier Analysis

- o How do steady and transitory sounds' spectra differ?
- o How do spectra of qualitatively different sounds differ?