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Tu. 2/19: Ch 8 Spectra and Electronic Synthesis 

Th. 2/21: Ch 9 Percussion Instruments 
HW6:Ch8: 1W,2W,3,5W,6… 

            Ch9: 3,10W,18W, 20,23,25
W

 

Mon. 2/18  or Tues. 2/19: 

Lab 7 Audio Spectra 

Spring Recess 

Tu. 3/5: Ch 16 Sound Reproduction 

Th. 3/7: Ch 16 Sound Reproduction 
HW7:Ch16:1

W
,7

W
,11

W
… 

           Ch16:13
W

,18
W

,19
W

 

Mon. 3/3  or Tues. 3/4: 

Lab 8  Percussion pt 1 - Drums 

 

 

Equipment 

 Pasco driver, function generator & metal strips (16-24 Hz, 108 Hz)  

 Air track with all carts, springs, and adjustable stopper 

 Tuning Fork on resonance box (go with tallest thin fork), and fork without box, 

and mallet 

 Strobescope (if fork is 256Hz, set scope to around 25.4 Hz) 

 http://www.falstad.com/mathphysics.html 

o LoadedString 

o Coupled masses 

o Flexible bar 

o Circular drum head 

 Symbol / pan lid 

 Graph paper for everyone 

 Masses-on-springs rod 

 Masses-on-springs solid 

 Matter & Interactions Quicktime of book cover 

Administration 

 Topics 

o I’ll e-mail folks this afternoon to confirm topics.  

 

 Ch 8 to 9 transition 
o In chapter 8 we learned how a complex sound wave could be thought of as 

a combination of pure (sine wave) tones.  While the overall repeat 

frequency of the complex sound determines its pitch, how strongly each 

component is represented determines its timbre.  Like a wine coinsure 

might try to describe a wine in terms of different ‘components’ of its 

flavor – how oaky, how fruity, hint of vanilla,… we can describe the 

sound of a note in terms of how the different components are mixed, and 

that’s what really distinguishes a flute’s version of A4 from trombone’s – 

same pitch, different timbre, different mix of components. 

o Of course, to produce a complex tone, I could set out five speakers with 

five function generators, each one driving its own speaker head at its own 

single frequency, and we let all those sounds mix in the air.  But that’s not 

how we usually do it; usually, we pick up just one instrument and strum, 

pluck, blow,… it.  Now how does that one instrument simultaneously 

produce all the pure-tone components of the rich sound?  How does it 

vibrate at all those frequencies at once?  That’s what Chapter 9 is about –

looking at complex motion of an object, a string, a bar, a drum head,… as 

equivalent to a sum of simple, single-frequency motions: modes.   

http://www.falstad.com/mathphysics.html
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o As we call single-frequency sounds “pure tones”, we call single-frequency 

vibration of an object a “mode”.  These two are, of course, inextricably 

related. 

 

 HW.  Before we launch in to all the demonstrations and examples that I hope will 

help Ch 9 come to life, on a more practical level, I want to work with you on a 

more practical level – anyone who’s been working on the homework, any 

questions? 

 

 

 Ch 9  
o In this chapter, we’ll really put Fourier’s ideas to use to understand how a 

complex sound can be made by complex motion which can be considered 

a superposition of simple motions. 

o 9.1 Searching for Simplicity 

 Demo:  Strike “cymbal” (pan lid) & capture wave-form and 

spectrum. 

 The oscillations in air pressure / sound wave produced by 

something like this ‘cymbal’ is quite complicated; in some 

ways it’s the most complicated of musical sounds thanks to 

its non musicalness.  Then again, it’s one of the simplest of 

instruments – there’s really just one working part, and 

there’s little subtlety in how it’s played. 

 Looking at percussion instruments in a little more detail will help 

to firm up our understanding of how, on a fundamental level, 

complex sounds are produced, and so lay some foundations for 

thinking of other instruments. 

 Building from simple understanding in science. As the book 

suggests, we’re going to start far simpler than this, and slowly 

build up.  In the spirit of this course’s being an MS1 – for many of 

you, your taste of a natural science, I should point out that this is 

an example of a common approach in the sciences, definitely in 

Physics. 

 Take this marimba bar for example, how well do I 

understand how it makes sound?  I can qualitatively 

describe it in words, and that’s something; however, in 

physics, we don’t say we really ‘understand’ something 

unless we can describe it completely, precisely, and 

accurately enough to make precise and accurate 

predictions.  Of course, the most precise language we can 

use to describe something is that of mathematics, so this 

means we’ve got to be able mathematically describe/model.  

Until I can write down equations that accurately describe 

the motion of a marimba bar, equations that I can write into 

a computer simulation to reproduce its sound, then I don’t 

‘fully’ understand it. 
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 Now, I can’t describe the motion of marimba bar that well.  

However, if I examine the marimba bar with my physical-

abstraction vision, I see it as a bunch of atoms bound to 

each other, and when I whack the bar, I’m knocking around 

those atoms – stretching and compressing their bonds.  I 

know that as long as those bonds aren’t stretched or 

compressed too much, they’ll push the atoms back into 

place just as springs would push masses.  Now that’s 

something I can mathematically model – a mass on a 

spring. 

 So, I’ll build up my understanding of the marimba bar atom 

by atom – mass & spring by mass & spring. 

 In another class, for physics majors, we’d actually do that 

completely rigorously and, for a simple chain of atoms, 

we’d end up having derived, among other things, the 

expression for the wave speed on a string (something you 

and I have made some use of).  In this class, we’ll just get a 

feel for how the logic goes and pull out some of the big 

points. 

 

o 9.2,.3 Coupled Pendulums & Natural Modes & their Frequencies 
 To make sound, something’s got to oscillate back and forth.  The 

simplest oscillators we can imagine are a mass swinging from a 

string or bouncing on a spring.  In either case, the mass has just 

one frequency it likes to move with.  We’ll see that, as we add on 

more masses interacting with each other, we get the potential for 

greater variety of oscillations / greater variety of frequencies of 

oscillation / greater variety for sounds. 

 We’ll follow the book’s basic path – start with one mass that can 

just vibrate back and forth to stretch and compress its spring 

(longitudinal modes): 

 Demo: http://www.falstad.com/mathphysics.html, coupled masses 

(start with just one mass) 

 1 mass on 2 springs.   

o If we just have one mass on a spring, it can only 

move in one way – back and forth, and there’s only 

one possible frequency of its motion, 
m

k
2
1 .  If we 

imagine, as is illustrated here, that there are two 

springs, one on either side, then the mass is 

subjected to twice as much force for a given 

displacement, so 
m

k
f

2
2
1 .   

o As time goes by, the oscillation may slowly decay 

away, but as long as the mass is oscillating, it’s 

going at this frequency. 

http://www.falstad.com/mathphysics.html
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o Resulting sound 

 Imagine we had a very little mass on a very 

stiff spring, so it was vibrating very 

frequently, say 256 Hz, it would probably be 

pretty quiet, but the sound waves that it 

would emit would then have this one 

frequency. 

o Demo: Air track – 1 cart, 2 springs – 1 mode and 

frequency 

 2 masses on 3 springs. 

o Once you add a second mass, there are a lot more 

possibilities (pull back one mass and let it go)   

o Not generally sinusoidal.  Notice how the two 

masses trade off moving fastest – first one, then the 

other.  In general, when you nudge or pluck this 

system into motion, neither mass will move 

smoothly.  

o Two sinusoidal modes.  But there are two ways 

you could imagine setting going motion to get 

smooth motion 

 Identical motions 

 When they’re moving identically, 

then the spring between them never 

gets stretched or compressed, so it’s 

as good as if that spring weren’t 

there in the first place; then the two 

masses would clearly be oscillating 

at 
m

k
2
1  

 or opposite motions 

 When they’re moving against each 

other, like mirror images of each 

other, then the center spring gets 

doubly compressed or doubly 

stretched for a given mass 

displacement, so, between that and 

the regularly stretched/compressed 

springs on the ends, the masses 

experience 3 times the force, and so 

have a frequency of 
m

k3
2
1  . 

 Notice that in either case, there’s a 

symmetry between what one mass and the 

other mass is doing – if one mass is 

speeding up because the springs by it are 

particularly stressed, well so is the other 
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mass – so the motion is smooth and 

sinusoidal. 

o Demo: Air track – 2 carts, 3 springs – 2 modes 

and frequencies 

o General  

 Now let’s pluck one mass again and 

compare it’s motion to the two simple 

motions  

 While the actual motion looks pretty 

complicated compared to just standing still,  

 Mode 2 about Mode 1(highlight the in-

synch mode) if we compare it against, say 

the simple in-synch mode, then it looks a lot 

simpler – like the masses are oscillating as 

mirror images (second mode) about where 

they’d be if they were in-synch (1
st
 mode).   

 Mode 2 + Mode 1.  Put another way (click 

the “stop” button and then highlight one and 

then the other mode), the actual motion is 

simply a sum of the two simple motions.   

 Any motion that these two can execute, can 

be seen as such a combination of the two 

modes, it’s just a matter of the relative 

amplitudes. (vary relative amplitudes for 

different motions) 

o Fourier 

 That notion should sound awfully familiar – 

complex oscillation is the sum of simple 

oscillations; all we need to specify is the 

frequency and amplitude of each simple 

oscillation, a.k.a. “mode” – that’s the 

spectrum. 

o Sound Produced 

 Again, imagining these as little masses on 

stiff enough springs that they vibrated at 

audible frequencies – if in one or the other 

simple mode, then we’d here just one or the 

other simple pitch, but more generally, we’d 

here a complex sound composed of the two 

mode’s frequencies of different relative 

amplitudes. 

 

 3 masses on 4 springs 

o  The same could be said for a system of 3 masses, 

but now, rather than having just two simple modes, 

there are three.  Again, the simple modal motion is 

that which is of constant frequency. 
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o Show three modes, and then pluck and push to 

get more general motion. 

 1: Move left and right together. 

 Note; this mode is similar to the one 

that the book shows for three 

pendulums connected by springs, but 

it differs in that the motion is purely 

caused by the springs (as opposed to 

relying on a pendulum’s own 

tendency to swing), so the only way 

the central mass will move back and 

forth is if the springs beside it get 

compressed and stretched – still, it 

moves left and right in synch with 

the other two, just with larger 

amplitude. 

 2: the outer ones move against each other – 

so the middle one’s caught in a tug-of-war 

and goes nowhere. 

 3: every-other one moves opposite its 

neighbor (zig-zag mode) 

o Demo: Air track – 3 carts, 4 springs – 3 modes 

and frequencies (going to need an assistant for a 

3
rd

 hand) 

 General:  Again, any motion that these 

three masses can execute can be seen as a 

combination of these three modes  

 show the 1
st
 and 2

nd
 mode exited, 

track motion of the 1
st
 and see 

motion relative to that 

 show a combo of all three. 

 4 masses on 5 springs 

o (before moving the slider to have 4 masses) 

Question: How many modes will this system 

have? 

 4 

o Who has an idea what one of them might look 

like? 

 All moving in synch (central two have 

greater amplitude, but do not compress 

central spring) 

 Left 2 move against Right 2 

 2 outers move against 2 inners 

 Each moves against its neighbor.  

o Generally.  The general possibilities are still richer, 

but they’re made up of combinations of these four 

modes with different amplitudes. 
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o Demo: Air track – 4 carts, 5 springs – 4 modes 

and frequencies (going to need an assistant for a 

3
rd

 hand) 

o  

 N masses on N + 1 springs 

o There would be N simple modes 

o General motion  

 would be like a combination of each of these 

with different relative amplitudes. 

o Sound Produced 

 Would sound like all these frequencies with 

their relative amplitudes.  

 Transverse modes. 

 Now, what if the masses, rather than being confined to 

move toward and away from each other, they were 

confined to swing by each other?, so rather than stretching 

and compressing the springs they ‘plucked’ them like this? 

 1 mass on 2 springs (loaded string with 1 mass)Coupled 

masses applet. 

o Again, there’s just one kind of motion with one 

frequency of oscillation,  

o Sound: and therefore, one pitch of sound produced 

(turn on sound, then turn back off) 

 2 mass on 3 springs 

o How many simple modes? 2 

 Mode 1: Move together, with one constant 

frequency 

 Mode 2: Move opposite, with another 

constant frequency 

o Generally 

 Any motion that can be executed can be 

seen as a combination of these two  

 set combined motion going and 

hilight fundamental so they can see 

combo as motion relative to 

fundamental 

 Stop motion and select one and then 

the other mode to see that 

combination is simply the sum. 

o Sound 

 The sound of any combination would be like 

the simultaneous sounds of the two 

individual modes. (turn on sound) 
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 3 masses on 4 springs 

o 3 modes 
 1 All move together 

 2 Ends move opposite and center stationary 

 3 Each moves opposite its neighbor (zig-

zag) 

 Note: These are the same kinds of modes as 

for three masses moving toward and away 

from each other 

o General 
 General motions are all combinations of 

these three of different amplitudes 

 Demo: Turn on 1
st
 and 3

rd
 harmonics and 

see combined motion as 3
rd

s oscillations 

about 1
st
. 

o Sound 

 The sound produced by a system oscillating 

like this would be combinations of these 

three mode’s sounds (turn on sound for 

general motion) 

 5 masses on 6 springs 

o The book shows these 5 modes 

 N masses on N+1 springs 

o There are N modes of oscillation for this virtually 

continuous string. 

 3-D motion 

 Most generally, an individual mass bound by springs can 

move left-right, front-back, and up-down, so in 3 discrete 

directions in 3-dimensional space.  So, if you have a 

combination of N masses, then there are 3N modes (N left-

right, another N front-back, and another N up-down). 

 Balls-on-springs model of solid 

 That’s important because, any chunk of material is like a 

bunch of masses connected by springs / atoms connected 

by bonds. 

 Movie of masses on springs.  So we could generalize what 

we’ve seen of chains of masses to this – the most 

complicated of motions can be thought of as a sum of 

simultaneous simple modes of motion. 

 The Main Points 

 Every system of point masses (be it a string on a guitar, or a 

cymbal) has some number of different modes of oscillation 

which scales with the number of masses. 

 Each mode has all parts of the system executing simple 

harmonic motion in unison, with the same frequency. 
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  All complex vibrations of the system can be resolved 

(Fourier-like) into a combination of these modes, each with 

specific amplitudes (thus, a specific spectrum). 

 9.4 Tuning Forks and Xylophone bars (Flexible bar applet) 

 In some ways, we’ve used these basic ideas already in this class – 

when we identified the nearly infinite family of standing wave 

modes that a string or column of air (with its virtually infinite 

number of atoms) can support, and with our insistence last chapter 

/ Tuesday that we could describe any complex tone in terms of 

simple pure tones (modes) of specific frequencies and amplitudes – 

a specific spectrum.  But now we’re going to be more specific 

about using this conceptual model. 

 Tuning Fork 

 A tuning fork is two connected solid beams, each one of 

which can be thought of as a series of masses connected by 

springs (atoms connected by bonds), so there will be a 

series of possible modes of oscillation.  Given that one end 

is essentially fixed and the other is free, the simplest you 

might imagine would be 

o Demo: BarWaves applet (set ends clamped/free) 

o Demo:  Pasco driver with resonance bars – longest 

resonates around 16 Hz. 

 This is indeed the dominant mode 

o Demo: Tuning Fork with strobe light (fork around 

256Hz, light around 25.4Hz, with blinds closed) 

 I’m pretty sure those of you nearby can see 

the fork’s tines moving a few millimeters 

left and right, hopefully some of the rest of 

you can too. 

 Higher Frequency Modes  While that’s the easiest mode 

to excite, it isn’t the only one; in fact, when I strike the 

fork, especially one not anchored to a resonance box, you 

hear a much higher pitch too 

o Demo: 2
nd

 mode in simulation (the “clang” tone) 
o Demo: Pasco Driver with bars – longest’s 2

nd
 mode 

around 108 Hz 

 Frequency/Sound: Note that this 2
nd

 mode 

isn’t just twice or even three times, but 

about 6 times higher than the first mode.  

This is a real difference between a string, or 

even air, and a stiff bar 

 DYLanfn //162.081.2 22

2
1

where a is the cross-sectional area, L 

is the length, Y is young’s modulus, 

and D is the density. (but the 

fundamental is with the term in 

square brackets = 1) 
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o Combination - Highlight 1
st
 mode while both are 

running, so combination can be seen as 2
nd

 mode 

oscillating about first.  

o Demo: Play sound with 1
st
 and 2

nd
 mode.  This 

sound is hopefully familiar from striking the tuning 

fork. 

 Still higher modes.  Since there are umpteen atoms, there 

really are umpteen modes, but under normal conditions, the 

bottom two dominate 

o Show higher modes. 

o Xylophone bars 

  There’s a whole family of percussion instruments that are based 

on a free bar that is struck with a mallet – having slightly different 

boundary conditions (both ends are free), the relation between the 

different modes is slightly different from that for the bar fixed at 

one end 

 DYLanfn //028.1441.0 22

2
1  (with the 

fundamental having the term in square brackets equal to 1). 

 Demo:  BarWaves applet with free ends. 

o First play the sound of just one and then another 

mode 

o Then turn off the ‘sound’, turn off damping, dial up 

1
st
, 2

nd
, and maybe 5

th
 mode and then “sound” to 

hear something much like a xylophone bar. 

 Shaping and resonating 

 Unfortunately, these non-integer relations between the 

modes means that when they sound simultenously, they do 

not produce a pleasing steady tone since they do not have 

an over-all repeat frequency.  The instrument can be made 

more ‘musical’ by carving out the center of the bar so that 

the lowest mode, which must bend only there, finds the bar 

much less stiff, and so its frequency is lower – the right 

amount of carving can get the fundamental down to 3 or 4 

times the 2
nd

 mode, so they are truly harmonics – 

combining to produce a steady ‘musical’ tone.  For the 

marimba the bar is thinned to make the fundamental ¼ the 

2
nd

 mode, and for the xylophone its only thinned to be 1/3.  

(Higher frequency modes aren’t strong enough or long-

lived enough to worry about matching.)   

o 9.5  Drums, Cymbals, and bells 
 Won’t get into too much detail, Patrick will be talking about a 

specific drum, but want to touch on the basic modal patterns.  

These are really 2-D generalizations of the 1-D patterns for bars 

and strings. 

  Demo:  Drum Head app. (2D+3D view, mouse set to strike 

drum)   

o Step through some modes 
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o Strike in center (what modes do you predict will get 

excited?) 

o Strike off to a side. 

o 9.6 Striking Points and Vibration Recipes 
 The modes that are going to be most strongly excited when you 

strike the object are those that want the medium to move the most 

right where you struck it / the modes that are weakest are those that 

want the medium to not move right where you struck it.  

 Demo:  Drum Head app. (2D+3D view, mouse set to strike 

drum)   

o Strike in center (what modes do you predict will get 

excited?) 

o Strike off to a side. 

 

 The larger space over which you strike (as with a fat mallet), the 

more ‘pie wedges’ you over lap, and so shorter-pattern / higher 

frequency modes are reduced. 

 The initial strike of the stick or mallet sets the membrane vibrating, 

if the mallet remains touching the surface, then acts to adsorb the 

rippling and dampen vibrations.  

o 9.7 Damped Vibrations 
 Those modes that more efficiently transfer energy out, dampen 

fastest – maybe that’s because they move the most air, maybe 

that’s because they want to move the object right where 

something’s restricting their motion.  In any event, that means that 

a complex sound doesn’t just uniformly grow quieter – its ‘color’ 

changes as it goes – maybe it “brightens” with the low frequencies 

dying out first, or may be it “darkens” with the high frequencies 

dying out fastest. 

 

 

 


