For Monday 9/17, reread Griffiths' section 2.3.1 and turn in by 9:30 am:

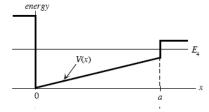
- 1. In words, explain the concept and usefulness of ladder operators.
- 2. What the heck is a hermitian conjugate?
- 3. In the last weekly homework problem, you are asked to find <T>+<V>. What do you expect this to be and why?
- 4. Turn in #2-3 from last Friday and make a good attempt at the weekly hw.

"For realz" weekly homework due 9:30 am on Wednesday 9/19 is math problems from 9/12 and 9/14.

For Wednesday 9/19, read Griffiths' section 2.3.2 and Q10.6 and turn in by 9:30 am:

- 1. Easy Math: Construct the third thru fifth excited states of the harmonic oscillator using Hermite polynomials.
- 2. Fill in: Show explicitly that equation 2.75 satisfies 2.74.
- 3. Conceptual: Go back and do problem Q10B.7 using Schrosolver.
- 4. Math: Compute $\langle x \rangle$ for ψ_5 and compare to value from problem last math problem from last Friday.
- 5. Math: A particle in the harmonic oscillator has the initial wave function:

$$\Psi(x,0) = \frac{1}{\sqrt{2}} [\psi_0 + \psi_2] \; .$$


- a. Compute <*x*>.
- b. If you measured the energy of this particle, what values might you get, and what is the probability of getting each of them?

For Friday 9/21, read Griffiths section 2.4 and Q11 and turn in by 9:30 am:

- 1. Conceptual: The graph shows the potential energy as a function of position for a certain quanton. What should the eigenfunction corresponding to the fourth energy level look like? Why? Be specific.
- 2. Fill in: Show that eq. 2.92 satisfies eq. 2.90.
- 3. Math: A free particle has the initial wave function

 $\Psi(x,0) = Ae^{-a|x|}$, where *A* and *a* are positive real constants.

- a. Normalize $\Psi(x,0)$.
- b. Find $\phi(k)$.
- c. Construct $\Psi(x,t)$ in the form of an integral.

