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1 Introduction

The purpose of this Teaching Guide is to examine the physics behind electrodynamic ion traps, and specifically to
take a close look at the Newtonian Labs Electrodynamic lon Traps (EIT) apparatus. Electrodynamic ion traps, also
known as Paul traps, provide a means to guide the motion of charged particles, especially confining charged particles
in free space using only time-varying electric fields. Wolfgang Paul and Hans Dehmelt received the Nobel Prize for
Physics in 1989 for developing ion traps, and this technology is still in widespread use today.

Electrodynamic Paul traps operating at MHz frequencies can hold individual atomic or molecular ions, and these
traps are commonly used as starting points for physics experiments investigating atomic or molecular properties.
Paul traps have been used for building rudimentary quantum computers as well, in which the individual ions serve as
qubits that can be examined using probe lasers. lon trapping techniques are also commonly used in chemical mass
spectroscopy, for determining the molecular weights of complex compounds with high precision.

Our focus below will be on trapping larger particles — about 25 m in diameter — using electric fields oscillating
at 60 Hz. The ion traps themselves are a few centimeters in size, operating in air, and the particles are illuminated
using laser light, making them easily visible to the naked eye. Additional information about the EIT apparatus can be
found in our Instrument Description document. In addition, several experiments that can be done using this hardware
are described in our Guide to Experiments document. Both documents are available online at NewtonianLabs.com.
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1.1 Earnshaw’s Theorem

The basic idea of an ion trap is to confine a charged particle in free space, away from any other matter, using electric
fields alone. There is a famous theorem, called Earnshaw’s theorem, stating that one cannot construct a stable ion
trap using electrostatic fields alone. To trap a positively charged particle at some position in space, for example, the
electric field vectors around that position would all have to be pointing inward. And Maxwell’s equations, specifically
Gauss’s Law, tell us that this is impossible unless there is a net negative charge at that position. So, try as one might,
fundamental laws of physics tell us that it is not possible to create a static electric field geometry that will stably trap
charged particles in free space.

There are magnetic variations of Earnshaw’s theorem as well, for example stating that you cannot stably trap a
bar magnet in free space using only static magnetic fields. Adding gravity does not help, and another version of
Earnshaw’s theorem states that you cannot levitate a stationary permanent magnet using only static magnetic fields.

Fortunately, there are many routes around Earnshaw’s theorem. One popular engineering method is to use active
feedback. For the magnetic case, one can continually measure the position of a levitated magnet and adjust the
forces appropriately to keep the magnet positioned where you want it. This method is relatively cheap and easy to
implement, and magnetically levitated trains work this way. Another way around Earnshaw’s theorem for magnetic
levitation is to use a spinning magnet instead of a stationary one. There is a toy called the Levitron (easily found
online) that demonstrates levitation of a spinning magnet without using active feedback.

Paul and Dehmelt got around Earnshaw’s theorem by using oscillating electric fields, since the theorem strictly
applies only to static fields. It is not immediately obvious that you can use oscillating fields to trap particles (hence
the Nobel Prize), so our first task is to understand the basic physics behind all this.

1.2 lon Trapping Physics

Our goal in this document is to write down a fairly detailed description of the physics of electrodynamic ion trapping,
with our main focus being on the EIT instrument. Thus our description will apply to the 25-micron-diameter particles
used in the EIT experiment, trapped in air using high-voltage 60-Hz electric fields. This document is meant for the
instructor and more advanced students, so it includes a fairly mathematical treatment of the subject. Furthermore we
will examine some of the more subtle aspects of this experiment, for example the extended orbits described below.
For a mathematics free (almost) explanation of ion trapping, more suitable for beginning physics students, please see
our Physics of electrodynamic ion traps - A qualitative description, available at NewtonianLabs.com.

2 Basic Trap Dynamics

2.1 A Uniform Field Example

To begin, consider a charged particle placed inside an ideal parallel-plate capacitor, as shown schematically in Figure
1. Assume that the plates are large and separated by a distance d, and there is a vacuum between the plates. As
long as the fields do not change too rapidly, we can assume a uniform electric field in the space between the plates,
at any time equal to E(t) = V(t)/d, where V (¢) is the applied voltage. Assume a sinusoidally oscillating voltage,
V(t) = Vb coswt, which gives an electric field between the plates E(t) = Ey coswt, with Ey = V,/d. In this field
we place a particle having a charge ¢, as shown in the Figure.

The time-dependent electric force on the particle is F(t) = q¢E(t) = gFy cos wt, so the motion of the particle in
the z direction is described by the equation of motion (£ = ma)

mz = qFgcoswt

Page 2



FFr+Fr -+ ++] (- =-——=—-—-———]

L veh b L et
P oot

z z

—————————] ¥ FFF++F+FF]

Maximum Electric Field in Cycle One-Half Cycle Later

Figure 1. A charged particle placed initially at rest inside a parallel-plate capacitor. An oscillating voltage is applied
to the capacitor, so the electric field oscillates with time. At any given time, however, the field is uniform between
the plates. The oscillating electric field causes the particle position to oscillate. When the particle position z is high
(left), the electric field pushes it down. When the particle z is low (right), the electric field pushes it back up. The
average particle position (z) remains constant.

To solve this equation, we try a solution of the form z = A coswt, giving

Z = —wAsinwt
5 = —w?Acoswt
—mw?Acoswt = qFEgcoswt
E
= A= —q—°2
mw
and this gives the full solution
qEo
2(t) = Zzinit + Vinitt — — coswt (1)

where z;,,;; is the initial position of the particle and v;,,;; is its ini%‘fvelocity. Note that this solution works in various
trivial limits, for example if ¢ = 0.

[Note also that you can easily prove to yourself that Equation 1 satisfies the equation of motion — just plug the
solution into the equation and see that it works. Proving that Equation 1 is the only possible solution is not so simple.
Uniqueness Theorems doing just that are the subject of advanced courses in differential equations, and we will not
venture into this topic here!]

If we take v;,,;; = 0, just to make life simpler, then the solution becomes

z(t) = Zzinit — ﬂ% cos wt (2
mw
= Zinit + Az(t)
In other words, the particle stays where we initially placed it (see Figure 1), but the oscillating electric field causes
the particle position to oscillate. We will call Az(t) the particle micromotion, since we will typically assume this
motion is fast and small. Motion over times much longer than 7' = 1/w is often called the secular motion.

Note that the particle position is 180 degrees out of phase with the applied force: when Az is positive, the force
is negative, so the force pushes the particle back toward z;,,;;. When Az is negative, the force is positive, so again
the force pushes the particle back toward z;,;;. This behavior is shown in Figure 1. So in this simple example the
particle just oscillates about z;,,;;. If you think about it for a minute, this all makes reasonably good sense.

2.2 Add an Electric Field Gradient

Now we make the problem a bit more interesting by adding a field gradient, so the electric field is no longer uniform
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Figure 2. A charged particle placed initially at rest inside a curved-plate capacitor. The geometry of the plates
causes a gradient in the electric field strength - the field is stronger for larger z (as shown by the longer arrows)
The imbalance means that the electric force on the particle is stronger at the top of its motion (left) and weaker at
the bottom (right). Averaging over time, there is a net force that pushes the particle down, toward the weaker-field
region.

in space. One way to add an electric field gradient is to curve the plates of our capacitor a bit, as shown in Figure 2.
For example, the two plates in the figure might be sections of spherical shells, where the geometrical centers are both
located at the same point high above the plates.

The details of the plate geometries are not especially important. What is important is that the electric field lines
look roughly like those shown in Figure 2 — in particular, the field strength near the top plate is higher than near the
bottom plate (note the lengths of the field vectors in the Figure.) Since we only curved the plates slightly, we haven’t
changed the field much, so the particle micromotion is about the same as it was before — the particle essentially just
oscillates about its initial position.

But now we can see, just from the geometry in Figure 2, that the force over one cycle no longer averages to zero.
As shown in the Figure, when Az is positive (left side of the figure), the particle experiences a stronger-than-average
electric field pushing it downward. And when Az is negative (right side of the figure), the upward force is weaker
than average. This imbalance was not present in Figure 1. From this fairly basic reasoning, shown graphically in
Figure 2, we deduce that there is a net force pushing the particle down. Put another way, the secular force, averaged
over many oscillation cycles, pushes the particle toward a region where the oscillating electric field is weaker.

The math all supports this, as we can demonstrate. We write the modified field as

E(z,t) = (Eg + E'z) coswt
where E' = dFE/dz. We assume that E’ is small, so the particle micromotion is not much different from the £/ = 0
case. Here we also assume that we are initially placing the particle at z;,,;; = 0, which is halfway between the plates,

just to simplify the equations.
With the added field gradient, the equation of motion becomes

mz = q(Ey+ E'z) coswt

Solving this exactly is nontrivial, but we can capture the essence of the physics by looking at the limit of low E’.
Setting £/ = 0 gives the micromotion we saw previously

2
and for small E’ we assume that the micromotion shouldn’t change much. We use this to calculate an average force

on the particle as follows.

2(L E'=0)=— 4Fo cos wt
mw
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The total force on the particle at any given time is
F=¢q(Ey+ E'z)coswt

and we write the average force
(F) = {q(Ey + E'z) coswt)
where the average is over one oscillation cycle. Since Ej is constant, we see that

(qEp coswt) = qFEy (coswt) =0

o)
(F) = (qE'z cos wt)
Into this we substitute in the z(¢; £’ = 0) solution to give an approximate answer

E
(F) =~ <qE’ (q—OQ coswt) coswt>
mw

2
oS —% <cos2 wt>
While this is certainly not an exact result, we can expect that it may be reasonably accurate in the limit of low E’.
Since <sin2 wt> = <Cos2 wt> , We can write <cos2 wt> = % (Sin2 wt 4 cos? wt) = %, so finally
’F'E,
q2mw20 @)
The negative sign in this expression means that (F") pushes the particle toward a region of weaker electric fields.
Numerically integrating the equation of motion would give more accurate results, but Equation 3 is a good first step,
and it is sufficient for the present discussion. We see that the math confirms our simple reasoning above, and Equation
3 gives a reasonable quantitative approximation for the secular force.

Several key conclusions can be drawn from this discussion: 1) The particle motion separates into two regimes,
the micromotion that occurs on timescales comparable to the oscillation period, and the secular motion that occurs on
timescales long compared to the oscillation period; 2) the secular force is reasonably well approximated by Equation
3; and 3) the secular force pushes particles toward regions of weaker oscillating fields.

The last point turns out to be remarkably general, and this is an important fact. For any slowly-varying, physically
reasonable field geometry, the secular force always pushes particles toward regions of weaker oscillating fields. We
showed this for a special case above; the general case is more difficult to prove, and this is presented in an Appendix
below.

One very convenient way to think about all this is with a trap pseudopotential Uy, = (KE) =

micromotion

MV, romotion- HeTE the trap pseudopotential Uy, is simply equal to the kinetic energy of the particle micromo-
tion. And the secular force is then equal to the gradient of Uy,q,. You can try this in the example above, and you
can quickly show that the secular force (F') = dU,.qp/dz is given by Equation 3. A more general derivation of this

pseudopotential is given in the Appendix below.

(F) ~ -

3 Quadrupole Traps

Now that we have a basic understanding of how particles behave in oscillating electric fields, we can proceed to
make an ion trap by considering more complex field geometries. We will focus on what are called quadrupole ion
traps, looking at both 3D and 2D varieties.

One easy way to make a 3D quadrupole trap is shown in Figure 3. An AC voltage is applied to two ball-shaped
electrodes in a grounded box, creating oscillatory electric fields inside the box. Halfway between the balls, the
electric field is always zero by symmetry. Near this zero-field point, the electric fields at one point in the AC cycle
are shown in the Figure. Multiply these vectors by cos(wt) to obtain the electric fields at other times.

With this field geometry we see that the electric field strength increases in all directions outward from the zero-
field point halfway between the balls. Thus Uy, has a minimum at the zero-field point, since the particle micromo-
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Figure 3. One method for making a 3D quadrupole ion trap, using two ball electrodes in a grounded box. When
the balls are at a high potential relative to the box, the electric field lines are shown roughly by the arrows. Note by
symmetry the electric field halfway between the balls is always zero.
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Figure 4. Another method for making a 3D quadrupole trap, which is essentially the geometry used in the Ring Trap,
one of three ion traps that are part of the EIT instrument. In this configuration a ring electrode (seen edge-on here) is
inside a grounded box, and the potential between the two is set by an applied AC voltage.

tion increases in all directions out from that point. Thus the secular forces will push particles toward the zero-field
point, trapping them there.

Another approach for making a 3D quadrupole trap is the Ring Trap shown in Figure 4. Again the electric field at
the center of the ring is always zero, and the arrows show the fields in the vicinity of this central region at one point
in the cycle.

Both these examples show electric field geometries that: 1) have zero electric field at a center point, 2) have field
magnitudes that increase in all directions away from the central point, and 3) exhibit axial symmetry. We can quantify
this picture of quadrupole geometries by looking at the fields near the zero-field regions. Around the center points
we can do a multipole expansion of the fields, which is essentially a Taylor series expansion of the vector fields (a bit
more complicated than a Taylor expansion of a 1D function, but it’s the same principle.) Doing this (given without
proof here) reveals that the electric potential can be approximated near the trap center (r = z = 0) as

V (7, 2)3D—Quad = Ao + Az [222 — 7"2} coswt
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Figure 5. The 3D quadrupolar electric field geometry near the center of the Ring Trap and the Single Particle Trap.
This shows the electric field vectors when the ring voltage is at its maximum. Multiply each vector by cos(wt) to
obtain the electric fields at other times.

where Ay and A, are constants. The electric fields are then

E, = __8V = —4 A5z coswt 4)
0z

E, = _8_V = 2A57 coswt
or

and a vector plot is shown in Figure 5. Note that the electric field strength increases linearly with r and z as one goes
out from the origin.

If we do this for the 2D case, then we find (again given without proof here) that the electric potential can be
approximated near the trap center (x =y = 0) as

V(2,9)2D-Quad = Ao + Az [2* — y*] coswi
where Ag and A, are constants. From this we can calculate the electric fields

E, = _ov = —2Asz coswt (5)
ox
ov

Ey = *a—y = 2A2y coswt

and a vector plot of these fields is shown in Figure 6. Again we see that the electric field strength increases linearly
with 2 and y near the origin.

At this point it is beneficial to pause, stare at the electric field plots for a while, and ponder what is going on inside
these traps. At the trap center, there are no electric fields, so no electric forces at all. A particle at the trap center,
with no velocity, would just sit there. Away from the trap center, the electric fields are nonzero, so a charged particle
experiences what we are calling the micromotion — it oscillates back and forth, in our case at 60 Hz. Averaging over
a few cycles, there is also a weaker secular force that pushes the particles toward the origin. All around the origin, in
any direction, the particles are pushed toward the origin. Thus charged particles become trapped at the origin.

Key in this discussion is to separate in your head the micromotion from the secular motion. The micromaotion
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Figure 6. The 2D quadrupolar electric field geometry near the center of the Linear Trap. This shows the electric field

vectors when the applied voltage is at its maximum. Multiply each vector by cos(wt) to obtain the electric fields at
other times.

exists whenever the oscillating fields are nonzero. But you can average over the micromotion and extract the average
secular force (F'), as we did above. All the stationary forces, such as gravity, combine with (F') to determine the
long-term behavior of the particle. The pseudopotential U, is especially useful for visualizing the secular forces.

4 The Triboelectric Series

5 Damped lon Traps

The above discussion does not include viscous damping from air, which is important. Going back to the parallel-
plate capacitor example shown in Figure 1, the electric force remains F' = qE = qFy coswt, and to this we add

viscous damping F' = —~w, where ~ is the usual damping constant and v = Z is the particle velocity. The equation
of motion then becomes

mz = qFEgcoswt—~z2
E
Zz+Tz2 = 4z cos wt
m
where I' = ~/m. This time we write the equation in its complex form
E, .
FyTz= L0t

m

solution of the form z = Ae™?, giving

7w2Aeiwt 4 inAeiwt — @eiwt
m
A - qEo/m
w? — 4wl
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Table 1. The Triboelectric Series

Most Positive (+)

Air
Human Hands, Skin
Asbestos
Rabbit Fur | +++
Glass

Human Hair

Mica

Nylon .

Wool |

Lead

Cat Fur 2
Silk
Aluminum

Paper

Cotton

Steel
Wood
~ Lucite |
Sealing Wax -
Amber
Rubber Balloon
Hard Rubber
Mylar
Nickel
Copper
Silver
uv Resist
Brass
Synthetic Rubber
Gold, Platinum
Sulfur
Acetate, Rayon
Polyester
Celluloid
Polystyrene
Orlon, Acrylic
Cellophane Tape
Polyvinylidene chloride (Saran)
Polyurethane
Polyethylene
___Polypropylene
Polyvinylchloride (Vinyl)
Kel-F (PCTFE) o
Silicon ]
Teflon 'ﬁ-

Silicone Rubber

Most Negative (-)

Figure 7. A diagram showing the Triboelectric Series, adapted from http://www.siliconfareast.com/tribo_series.htm.
Materials near the top tend to become positively charged when rubbed, while those near the bottom become negatively
charged. In the Electrodynamic lon Traps apparatus we use Teflon and Nylon “wands” to pick up, charge, and deliver

particles for trapping.
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and the final solution (assuming v;,:: = 0) is given by the real part of the complex solution, giving

qEo/m .
z(t) = Zzinit — Re [me }
= Zinit + Az(1)
Note that if we assume I" = 0 (no damping), then we recover the solution above, in Equation 2. If T" > 0, then note
that the amplitude of the oscillatory term is always smaller than what we found above. This makes sense; we would
expect the addition of damping to reduce the amplitude of driven oscillations.
Carrying the math a bit further, we have

E ,
Az(t) = —Re {%em]

_ —Re{ qEo/m w2—|—iw1"eiwt]

w? — Il w? + Wl

__qEo/m
wh + w22
= f%m [w2 coswt — wl’ sinwt]
qby 1 r .
= —— T [coswt % smwt}

And again we note that this reduces to Equation 2 when I" = 0, as we would expect.

We now compute the trapping force by averaging over one cycle, as we did above. The force on the particle at

any given time is

Re [(w? 4 iwT') (coswt + i sinwt)]

F =q(Ey+ E'z) coswt
and the average force becomes (see above)

(Fy = (qF'zcoswt)
E 1 T
~ <qE’ (—q—om |:COS wt — — sinwt}) cos wt>
m w w
Since (sin wt cos wt) = 0, this becomes
FE 1
2
N q“E'Ey 1 9
e <cos wt>
_q2E1E0 1
2m w2 412

Comparing this with Equation 3, we see that damping reduces (F') compared to the I' = 0 case, which again seems
intuitively plausible.

5.1  Stokes Damping

To calculate the damping constant, we start with the Reynolds number

_ pvR

o

where p is the fluid density, v is the particle velocity, R is the particle radius, and  is the dynamical viscosity. For
our trapped particles in air, v ~ 1 mm/(1/60 sec) ~ 6 cm/sec, R ~ 10 pm, and for air at a pressure of one atmosphere
we have p ~ 1.2 kg/m3 and

R.

= kg
=18x107" —
a X m-s

so R, ~ 0.04.
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For such a low Reynolds number, the air damping is well approximated by Stokes damping, given by
F = —6ruRv
and we see that the force is proportional to —v, which is typical of a friction force. This gives a damping constant
v =6TuR
and
r = =X
m
6muR
%WR3ppart
9 p
2 RQPpart

where p,,,,, is the particle density.
Assuming a density of p,,,,., ~ 500 kg/m?, and using the other parameters above, this gives

'~ 1620s!

which is substantially larger than w = 27 (60 Hz) = 377 s—1. For example, the secular trapping force in Equation 6

becomes
¢*E'E,
2mI2

(F) ~
to an accuracy of about five percent.
With this “overdamped” approximation, the micromotion becomes
E(t) = Epcoswt
qEO/m eiwt:|

w2 — Il
E, .
Re |:q U/mezwt]

Az(t) = —Re {

Q

wl

qEo

mwl’

In the overdamped limit, the motion is 90 degrees out of phase with the drive force, rather than 180 degrees out of

phase, as we saw above.

sin wt

5.2 Particle Dynamics in a Quadrupole Trap

Next consider a particle in a 3D quadrupole trap, and look at the motion. From Equation 4, the oscillatory electric
field is
E, = —4Aszcoswt
= Fy(z)coswt
S0 Ey(z) = —4Asz, where A, depends on the applied voltage and the geometry of the trap. For convenience we can
write v
Ey(z) = Z;;Cz
eff
where z. s ¢ is a constant that depends on the geometry of the trap, and we expect z. ¢ ¢ to be comparable to the spacing
between the trap electrodes. This replaces one constant (A, ) with another, more physically defined, constant (zcs¢).
We are also free to define the sign of V4 to remove the minus sign from the expression. Changing the constants in
this way simply makes the subsequent math a bit simpler and more intuitive.
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The field gradient is

dEy(z)
dz

Vac

Zfy

The trapping force is then
. q2E/E0 1
2m  w? + 12

2
@ (Vac) 1
2m zgff w? + T2
7q2VjC 1 ;
1 2 2
2mzeffw +T

Q

_ *Vic
4 2
2mz€ffI‘
using overdamped approximation, which is accurate to about 4 percent.
Apply an external force F.,;, then the particle will settle to an equilibrium position z., where the trapping force
(F) balances the external force F.,;, giving
QQVXC‘ 2
2ngfff2 e

Q

~ Fext

Zmz;lf fFQ P
z - =
eq q2 Vjc exrt

Q

If we let Fl..; = qEstatic — myg, then
4 2
ey~ 2mz; f fF
*Vie
4 2
2mz€fff
Vie

(qutatic - mg)

Q

AEstatic

where
mg
AEstutic = Est(ztic -

Balancing gravity gives us a measurement of ¢/m, and z.sy is derived from the trap geometry. Thus a mea-
surement of the slope of z.;¢(AEgqtc) gives direct measure of I', and from this the particle radius R can be
independently determined.

Also measure micromotion under application of A Egyq¢c

Az(t) = —%EO—(M j—l”? coswt — gsinwt

Amplitude of oscillation in overdamped approximation (T" >> w)

qFEy 1 Tr
m w2+ 2w
qEo 1
m Wl
91 Vac
mwl zgff

AZmax =

Q

Q

Zeq

qg 1 Vac 2mzjffF2

= Egiati
mwl zgff quC static
222..T

~ & AEstatic
wVAC
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so again measure I".
Unstable orbit when Azp,.x = z.4, Which from the above means
g 1 Vac

=1
2
m wl’ 255 s

so stability requires
mwIl 22
Vag < ——1L

and once again we measure I.

6 Extended Orbits

When the AC fields are turned up in the EIT apparatus, one often sees extended particle orbits. These are
particularly apparent in the Linear Trap and in the Single Particle Trap. Explaining these orbits is a fairly advanced
topic, and a full description of the phenomenon requires numerical modeling of the particle dynamics. What follows
is not a complete treatment, but rather a fairly qualitative description of the phenomenon.

6.1 The Ring Trap

First consider the 3D quadrupole electric field geometry near the center of the Ring Trap, which is the same as
that near the center of the Single Particle Trap, as was shown above in Figure 5. Put a particle in the trap, with a
downward static force provided by gravity. Since the motion of the particle is overdamped, its micromotion velocity
is nearly proportional to the applied electric field. (Put another way, the particle motion is overdamped, so the particle
velocity is always roughly equal to the terminal velocity resulting from the electric and gravitational forces.) In this
overdamped approximation, Figure 8 shows the particle position and velocity as a function of time. For this particle
we have that: 1) the particle is displaced downward from gravity, so its mean position is below the trap center; 2)
the secular trapping force (F') is directed upward, toward the trap center, and this time-averaged force equals the
downward gravitational force, so (z) is constant; 3) at this (z), the particle exhibits micromotion caused by the
oscillating fields, which is the source of the trapping force; and 4) this is a stable oscillating state of the particle.

If we slowly increase the applied AC voltage to the trap, at first the particle motion will remain about the same as
that shown in Figure 8. However the highest z position reached by the particle will become closer to the trap center.
At some point this highest z position will equal and then go above the trap center, and at this point the motion will
transition into an extended orbit, as shown in Figure 9. Note that in Figure 8 the particle completed one cycle in a
time P, while in Figure 9 it takes 2P to complete the full extended orbit.

Figure 10 shows measurements of an extended orbit, for a particle held in the Single Particle Trap. A full analysis
of these data would require a numerical analysis, but one can see the essential features described in Figure 9. We see,
for example, that at ¢ ~ 14 msec the particle overshot, crossing above the trap center, and we can infer that at ¢ ~ 16
msec the electric field amplitude went through zero, and at this time the particle velocity was low. Note also that
the electric fields are always low near the trap center, so things happen more slowly there. The fields away from the
trap center are stronger, however, and this explains why the reversal at ¢ ~ 25 msec was especially rapid. Figure 10
also shows that the whole process repeated as the particle oscillated between positive z and negative z, taking 1/30th
second for a full orbit.

These extended orbits are commonly seen in the Ring Trap and in the Single Particle Trap, and we see from the
discussion above that basic mechanics readily explains the underlying dynamics at a qualitative level. Even without
sophisticated mathematical analysis or lengthy numerical simulations, one can understand the fundamental physics
that produces these extended orbits.
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Figure 8. The micromotion of a trapped particle in a 3D quadrupole trap (e.g. the Ring Trap or the Single Particle
Trap), where gravity displaces the particle down from the trap center. (Note that some electric field vectors in the
particle path are not shown, for clarity.) In panel 1, the electric fields pulls the particle down. Since the particle
motion is strongly damped, the particle velocity is roughly proportional to the electric field strength. In panel 2, a
quarter cycle later, there is zero electric field (so no field vectors in this panel) and the particle motion is quickly
damped away. In panel 3, the electric field pulls the particle up again. And in panel 4, the field and the particle
velocity again go to zero. The time-averaged (secular) trapping force is upward, balancing the downward pull of
gravity. Thus the oscillatory vertical motion of the particle is stable, repeating in time with a period P.

6.2 The Linear Trap

Extended orbits of a different nature are seen in the Linear Trap, as shown in Figure 11. These extended orbits are
commonly seen in the Linear Trap, and their explanation is similar to that above. We begin with the 2D quadrupolar
electric field geometry shown in Figure 12, which results in the stable orbit shown. This micromotion is analogous
to that shown in Figure 8. The geometry is different for the Linear Trap, but the underlying dynamics is similar for
the 2D and 3D cases.

As the trapping voltage is turned up, the micromotion shown in Figure 12 at first remains essentially unchanged,
except the endpoints of the motion move closer to the diagonal lines connecting the corners of the trap. As long as
the endpoints do not cross those lines, then the particle remains confined to the lower quadrant, as shown in Figure
12.

As the trapping voltage is increased above some threshold, however, then the particle motion will transition into an
extended orbit, as shown in Figure 13. In the 3D quadrupole case above, this happened with the micromotion carried
the particle above the trap center. In the 2D case shown in Figure 12, the transition occurs when the micromotion
overshoots the diagonals connecting the corners of the trap. Then the particle is no longer confined to the lower
quadrant, and it begins executing an extended orbit, and again the extended orbit has double the period of the simple
orbit. Although the geometries of the extended orbits in the two cases above are different, the underlying physics is
quite similar.

Figure 14 shows examples of the simple and extended orbits in the Linear Trap. (Note that an additional mirror,
not provided with the EIT instrument, is needed to view these orbits face-on in this way.) We have observed that
the simple orbits in the Linear Trap are quite stable, but the elongated orbits exhibit a rich behavior, as demonstrated
in Figure 15. These orbits are easily perturbed and quite fascinating to watch, and it appears likely that there may
chaotic regimes in the trap parameter space.
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Figure 9. A particle in a 3D quadrupolar field exhibiting an extended orbit. In the top four panels in this Figure, we
see that the particle motion is similar to that described in Figure 8, except this time the particle overshoots above the
center of the trap. When the field increases again (the fifth panel), the particle is then pushed up, taking it farther
above the trap center. When it comes back down, it again overshoots beyond the trap center, so the fields push it into
the lower half of the trap again. A complete cycle thus takes time 2P, whereas a time P was needed for the simpler

orbit in Figure 8.
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Figure 10. The graph on the left shows the measured position z of a particle in the Single Particl Trap (where z is
measured relative to the trap center) as a function of time, as the particle executed an extended orbit. These data were
obtained by analyzing a video taken when the laser was strobed. The image on the right shows a longer exposure,
zoomed in on the center of the trap. The brighter regions show where the particle slowed during its orbit.

Figure 11. Two photographs of particles held in the Linear Trap. The top image shows a line of ions in a stable
Coulomb crystal. When the AC voltage is turned up above a threshold, some of the particles transition into extended
orbits, and these orbits are seen edge-on in the lower image. The inset shows one such extended orbit in a face-on
view.
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Figure 12. The 2D quadrupolar electric field geometry near the center of the Linear Trap. At this phase of the cycle,
the electric fields push the particle (red) to the right (red arrow). As the cycle progresses, the particle is pushed back
and forth, executing the orbit shown by the red line. This stable orbit has a period P, and it is the analog of the stable
orbit shown in Figure 8. As in that Figure, we are assuming that gravity is displacing the particle down from the trap

center. Note that the particle motion is confined to the lower quadrant of the trap, the quadrants being defined by
diagonal lines connecting the corners of the trap.

Figure 13. An extended particle orbit in the Linear Trap. Here the electric fields are strong enough to cause the

particle to overshoot the diagonals, and when this happens the motion is no longer confined to the lower quadrant.
The particle executes the extended orbit shown, and the time required for a complete orbit is 2 P.
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Figure 14. Examples of simple and extended orbits in the 2D quadrupolar geometry. This photograph was taken
from along the axis of the Linear Trap, and it shows two particles simultaneously trapped. The short streak in the
lower quadrant came from a particle in a simple orbit. The larger line shows a particle in an extended orbit. Note that
one can infer from this orbit that the particle was traveling counterclockwise. The exposure for this photograph was
greater than 1/30th second, and the diagonal lines were added digitally to define the quadrants.

Figure 15. The extended orbits seen in the Linear Trap exhibit quite a variety of surprising behaviors. These pho-
tographs had exposure times of roughly a dozen orbits, and they illustrate how the orbits can evolve in complex ways
over short times.
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