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1 Introduction

Location problems in which regions are prohibited from locating new facilities but
traveling through is allowed are typically referred to as constrained or restricted lo-
cation problems. Such problems have the following two topographical properties. (1)
The new facilities cannot be located within certain predescribed restricted areas in
the plane. (2) It is not always necessary that any two points in the plane would be
“simply communicating”, i.e. the minimum travel distance between any two points
in the plane may be made longer by the presence of the restricted regions.

The existing literature consists of three types of regions that are encountered in
Restricted Facility Location problems. All are closed and bounded regions in R
Barriers through which travel is not permitted and facility location is also prohib-
ited, Forbidden Regions in which facility location is prohibited but travel through is
permitted, and Congested Regions in which facility location is prohibited but thor-
ough which travel is permitted at an additional cost per unit distance. Restricted
location problems have been solved for two objectives in the literature, viz. median

and center. Larson and Sadiq [3] examine the p-median problem in with arbitrarily



shaped barriers under the rectilinear distance metric. Batta et al. [1] examine the
p-median problem in the presence of arbitrarily shaped barriers and convex forbidden
regions assuming that all distances are rectilinear. The primary objective of this work
is to examine the facility location and placement problem in the presence of congested

regions, where all distances are measured with the rectilinear distance metric.

2 Planar Facility Location Problem with Congested
Regions

2.1 Problem Definition

To aid in our problem definition, we define a congested region as a closed and bounded
area in R? in which a new facility cannot be located but traveling through is allowed

at an additional cost per unit distance. The following are assumed in this work:

e A congested region is the interior of a convex polygon that is defined by a finite
number of vertices. This implies that there is no congestion along the boundary
of the congested region. Thus traveling along the boundary of a congested

region would not result in an increase in the cost per unit distance.
e The congested regions are non-intersecting and share no common boundaries.

e No existing facility is located inside a congested region.

Our problem statement is developed as follows. There exists a finite number of
congested regions where facility location is not permitted but travel is permitted at
a possible extra cost. The additional cost per unit distance is called the congestion
factor of the congested region and is denoted by a, 0 < a < oo. Thus if w is the cost
of travel per unit distance between two points lying outside the congested region, then
the cost of travel between the same two points when lying inside the congested region
would be (1 + a)w. (It is to be noted that congested regions can be considered to

be a generalization of barriers (allow no travel through, hence a = 0o) and forbidden



regions (allow travel through at no extra cost, hence a = 0)). The existing users
are distributed over a finite set of demand and/or supply points located anywhere in
the plane outside the congested regions. A new facility, assumed to be infinitesimal,

is to be located in the presence of the congested regions and the existing users.

2.2 Solution Methodology and Preliminary Results

In order to solve the facility location problem in the presence of congested regions, it
is necessary to determine the rectilinear least cost path between two existing users or
an existing user and a potential facility location in the presence of congested regions.
This is because, considering the rectilinear distance metric, there exist an infinite
number of shortest paths between any two points in ®? and hence an infinite number
of least cost paths. However in the presence of congested regions, the least cost path
between two points may no longer be the path of shortest length. It is also pertinent
to point out that as the congestion factor of a congested region increases, the least
cost path between two points will be gradually forced out of a congested region

In this work, an entry point and an exit point are defined as points where a
least cost path enters and leaves a congested region. A least cost path may also want
to enter and exit a congested region more than once, depending upon the location
of the origin and destination points, their location relative to the congested region
and also the shape of the congested region. A Mixed Integer Linear Programming
(MILP) formulation has been developed to calculate the “cost” of a least cost path.
Considering that the congested regions are convex polyhedra, the formulation chooses
the side on which the entry and exit points are located, whether there are multiple

entry/exit points and also their optimal location(s). It has been found that:

e The objective function of the minimum coat path between two points in the
presence of a congested region with congestion factor « is piecewise linear and

concave in o.

e The objective function of the minimum cost path between two points in the



presence of several congested regions with congestion factors oy, an, ..., q, is

concave in « space.

This gives rise to the definition of « break points, i.e. threshold values of a beyond
which a least cost path would tend to bypass (rather than enter) a congested region.
e.g., the break point of « for a single rectangular congested region with length [ and
width a, (I > a) is given by o > w, where a; + as = a. Some other results
obtained, however differ from the results by Butt and Cavalier [2]. Butt and Cavalier
[2] suggest that a grid structure to solve this problem that involves extending the node
traversal lines of Larson and Sadiq [3] to pass through the congested regions. (In [3],
the authors develop a grid construction procedure for barriers. They pass horizontal
and vertical X and Y lines through the existing facilities and the barrier vertices.) Our
work establishes that such a straightforward “barrier” extension of grid construction
for congested regions is incorrect. When the congested regions are convex polyhedra,
we conjecture that such a grid would have an extended set of node traversal lines
that are perpendicular to a node traversal line at the point of its incidence to a
congested region with o < co. The completeness of this, however, needs to be proven.
Based on this, a generalized optimal grid construction procedure for finding the least
cost path between two points in the presence of congested regions can be established.
The solution to the infinitesimal facility location problem will follow. Construction
of the grid, proving its optimality and solving the facility location problem is part
of our future work. It is also our endeavor to develop new theory for non-convex

congested regions.

3 Finite-size Facility Placement in the Presence of
Congested Regions

3.1 Problem Definition

In the problem discussed above, we assume that the new facility is infinitesimal.

This representation of the problem may not be accurate when the physical aspects



of the new facility are comparable with those of the existing facilities or congested
regions. This serves as our motivation to solve the finite-sized facility “placement”
problem in the presence of congested regions. A finite-sized facility has a server
located on its boundary through which it communicates with the users. The problem
is to find the optimal placement(s) for a finite-sized facility such that the facility
does not overlap with any of the congested regions and the sum of server-user and
user-user interaction is minimized. The term “placement” is more appropriate in this
case, because placing a finite-sized facility involves finding an optimal location for its
server as well as determining the orientation of the new facility. Thus location and
orientation together determine the placement of a facility.

The finite size facility “placement” problem presents the following complications:

e The orientation of the facility in addition to its server’s location need to be

known.

e The facility may itself act as a barrier to travel between the existing users and

the server.

e The facility may increase the travel distances between users. Therefore an inter-
active model, that considers user-user interaction in addition to the traditional

user-server interaction need to be developed.

e Determining the set of feasible placements of the facility is a challenging task.
For a given server location, the facility can have infinitely many orientations.
Conversely, for a given orientation, infinitely many server locations can be con-

ceived.

The finite-size facility placement problem can thus be stated as follows:
determine the optimal placement(s) for a finite-size facility such that the facility does
not overlap with any of the existing facilities and congested regions, and the sum of
user-server and user-user interaction is minimized. A mathematical model for the

problem and a solution methodology are yet to be developed.
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